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ABSTRACT 

Uncertainty estimates of detector spec-
tral responsivity measurements are dis-
cussed. A model describes independent 
(uncorrelated) uncertainty components at a 
given wavelength based on the measure-
ment equation for test detector calibrations. 
Systematic (correlated) components across 
wavelength are described briefly for spec-
trally integrated responsivity measurements. 
Propagation of the random and systematic 
components is discussed. 

1. INTRODUCTION 

The uncertainty analysis of spectral re-
sponsivity measurements should follow the 
“Guide to the Expression of Uncertainty in 
Measurement” (GUM) [1]. A Technical Re-
port within the TC2-48 Technical Committee 
of the International Committee on Illumina-
tion (CIE) is being prepared to make rec-
ommendations for spectral responsivity 
measurements of detectors, radiometers, 
and photometers. The goal of the present 
work is to prepare a chapter for the CIE 
TC2-48 Technical Report on the uncertainty 
determination of spectral responsivity meas-
urements using the GUM recommendations. 

Starting with the measurement equation, 
a model is described to evaluate the radiant 
power responsivity determination of a test 
detector at a given wavelength. Uncertainty 
in the measured value arises from the un-
certainty of the spectral responsivity of the 
standard (reference) detector, and from un-
certainties in the elements of the correction 
factor used to evaluate the radiant power 
responsivity of the test detector from the 
measurement (calibration) transfer. Follow-
ing the description of contributions that are 
independent of wavelength, systematic (cor-
related) uncertainty components in the ref-
erence detector are described and propaga-

tion of the components will be discussed for 
spectrally integrated measurements. 

2. THE MEASUREMENT PROCESS 

The relative standard uncertainty of 
spectral responsivity values can be derived 
from the measurement equation of the de-
tector substitution method. The substitution 
method transfers the radiometric responsiv-
ity of a standard detector to a test detector 
that has similar properties to the standard 
detector. When the standard detector meas-
ures the constant input flux (the total radiant 
power in the incident beam) Φ, its output 
signal IS is:  
 Φ⋅= SS sI   (1)  

where  is the known responsivity of the 
standard detector.  In the following step, the 
test detector is substituted for the standard 
detector and measures the same radiant 
power in the same arrangement: 

Ss

 Φ⋅= TT sI  (2) 

where  is the output signal of the test de-
tector and  is the unknown radiant power 
responsivity of the test detector that can be 
calculated from Eqs. (

TI

Ts

1) and (2): 
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When a monitor detector is used to de-
crease fluctuations in the radiant power, the 
modified measurement equation will be:  
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where instead of the electrical output signals 
 their ratios to the simultaneously 

measured monitor output signals  
are used: 

ST, II

MSMT, II

MSSSMTTT , IIRIIR == . 



3. MODEL AT A GIVEN WAVELENGTH 

In Eq. (4) the radiant power responsivity of 
the test detector is calculated as a product 
of at least three factors. If we ignore the 
measurement errors of the electrical signals, 
the relative standard uncertainty in the spec-
tral radiant power responsivity of the test 
detector can be written as 

( ) ( ) ( ) ( )[ ] 2/1
S

2
relT

2
relS

2
relTrel RuRususu ++= (5) 

In the brackets, the first contribution is the 
relative standard measurement uncertainty 
calculated from the certificate of the refer-
ence detector and the operational conditions 
during transfer. The other two contributions 
come from the measurement transfer. 

Note that at present, calibration certificates 
do not report correlation coefficients or un-
correlated and correlated components sepa-
rately. While measurements at the one 
wavelength do not depend on these correla-
tions, they become important when combin-
ing values at different wavelengths in spec-
trally integrated components; this is dis-
cussed in Section 4 below. 

The effective radiant power responsivity  
of the reference detector requires a small 
correction for a possible temperature devia-
tion  (relative to the temperature during 
calibration), and for a relative non-
uniformity

Ss

T∆

Sβ :  

( SSSS 1 )βα +∆⋅+⋅′= Tss  (6) 

where Sα is the relative temperature coeffi-
cient for the responsivity. The relative stan-
dard measurement uncertainty of the radiant 
power responsivity  of the reference de-
tector is calculated from the expanded 
measurement uncertainty  and the 
coverage factor 

Ss′

( )SsU ′

( 2)=k  given in the calibra-
tion certificate when the responsivity Ss′  was 
measured at temperature and is given by  CT

( ) ( ) ( )SSSrel 2ssUsu ′′=′ . (7) 

The temperature deviation CS TTT −=∆  is 
calculated from the temperature  (nomi-
nal value, no uncertainty contribution) and 
the measured ambient temperature  dur-
ing use. Often the standard deviation 
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of repeated thermometer readings is smaller 

than its resolution, which is an interval 
( )STres±  with rectangular probability distri-

bution. The temperature is measured with 
the thermometer certified with an (absolute) 
expanded measurement uncertainty 

( ) TTU δ=S  for a ( )2=k  coverage interval 

and gives the standard variance ( )22Tδ . 
The standard variance of the temperature 
deviation from the three contributions is: 
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The relative temperature coefficient Sα  is 
measured separately and the value can be 
determined with an associated relative stan-
dard measurement uncertainty ( S )αu  or 
taken from the related literature.  

Finally, the relative non-uniformity Sβ  has a 
zero value (it is included in the responsivity 
value) but its variation contributes to the re-
sponsivity measurement uncertainty within 
an interval Ss∆± , having a rectangular prob-
ability distribution. Therefore, the standard 
variance is calculated as ( ) 32

SS
2 su ∆=β .  

After these preparations and the two as-
sumptions SS1 βα +∆⋅>> T  and no corre-
lations between the quantities, the relative 
combined variance associated to the re-
sponsivity of the standard detector can be 
written: 

( ) ( ) ( ) ( +∆⋅++′= Tuususu 22
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If the temperature at the time of measure-
ment is the same as that at the time of cali-
bration, 0=∆T . In this case, from second 
order terms, the factor 2T∆  has to be re-
placed by the associated standard variance 

( )Tu ∆2 .  

For the test detector, similar contributions 
have to be taken into consideration.  The 
corrected value of the radiant power respon-
sivity Ts ′  of the test detector can be calcu-
lated for the ambient temperature  and 
for zero contribution of its own non-
uniformity:  

CT

( )TTTT 1 βα +∆⋅+⋅′= Tss  (10) 



Similarly to the considerations before, the 
associated relative standard measurement 
uncertainty of sT can be determined assum-
ing small corrections TT1 βα +∆⋅>> T  and 
no correlation. Then the relative variance 
can be written: 

( ) ( ) ( ) ( ) +∆⋅++′= Tuususu 22
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       (11) ( ) 2
T
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The combination of Eq. (4) with the correc-
tions in Eq. (6) and (10) give a new model 
for the radiant power responsivity evalua-
tion: 
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and taking the earlier assumptions into ac-
count (first order approach), the bracket is 
simplified to ( )[ ]TSTS1 ββαα −+∆⋅−+ T . 
This approach directly shows that for very 
similar test and reference detectors the tem-
perature and spatial uniformity errors will 
cancel out. 

The four photocurrents in Eq. (12), also con-
tribute to the measurement uncertainty. The 
assumptions for the photocurrent measure-
ments are: 

A. The same amplifier and Digital Voltme-
ter (DVM) are used for both the test and ref-
erence detectors assuming that the gain and 
range settings are valid for both photocur-
rents. 

B. With the test detector in place and shutter 
open, a series of  repeated readings 
are taken simultaneously for both the test 
( ) and the monitor ( ) detectors. 

20≥n

TI ′ MTI ′

C. With the above conditions (especially for 
the amplifier gain and DVM range) but with 
the shutter closed, “dark measurements” 
( , ) are taken. T0I ′ MT0I ′
D. With the reference detector in place and 
shutter open,  repeated readings are 
taken simultaneously for both the reference 
( ) and monitor (

n

SI ′ MSI ′ ) detectors. 
E. Under the same conditions, but with the 
shutter closed, “dark measurements” ( S0I ′ ), 
( ) are taken. MS0I ′

Mean values like TI ′  and its related standard 

deviations of the mean ( )TIs ′  are calculated 

for all the measured quantities and the two 
ratios: MSSSMTTT ; IIRIIR ′′=′′′=′ .  In princi-
ple, instead of these ratios, the dark current 
corrected ratios should be averaged. How-
ever, if the dark current is small and the 
measurement setup is fairly stable, then the 
measurement uncertainty evaluation can be 
simplified: 
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The ratio for the reference detector readings 
can be calculated similarly. Finally, the dou-
ble ratio in Eq. (4) will be: 
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Usually, there are four contributions to the 
measurement uncertainty from a series of 
repeated readings of a radiometer: the stan-
dard deviations of the two mean values for 
light and dark readings; the calibration fac-
tor, that cancels out in Eq.(14); and the reso-
lution I∆±  of the DVM.  For all photocur-
rents, the standard measurement uncertain-
ties are calculated similarly: 

( ) ( ) ( )2S0
2

S0 3/IIsIu ∆+′=′  (15) 

If a common amplifier is used for both the 
standard and the test detectors, then the 
currents T0S0, II ′′  for dark (and offset) meas-
urements are the same, as are their meas-
urement uncertainties. As they are deter-
mined in a series, one after the other, there 
is no statistical correlation, even if recorded 
by the same amplifier. 

Finally, the model to evaluate the radiant 
power responsivity of the test detector is 
calculated from the combination of Eqs. (12) 
and (14) with the higher orders omitted: 
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All the contributions in the brackets are very 
small corrections and the associated relative 
standard measurement uncertainty is often 

 



negligible. In a reduced form, the relative 
standard measurement uncertainty associ-
ated to the radiant power responsivity is 
combined from four dominant contributions: 

( ) ( ) ( ) ( ) ( )2 2 2 2
rel T rel S rel T rel S relu s u s u R u R u corr′ ′ ′ ′= + + +

 (17) 

The principles in the measurement equation 
of Eq. (16) are valid for each single wave-
length λ . Accordingly, all quantities are 
wavelength dependent:  

( ) ( ) ( )
( )

( )λ
λ
λ

λλ corr
R
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′
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The correction factor includes contributions 
(originating from the measurement transfer) 
from temperature deviation , relative 
temperature coefficient of responsivities 

T∆

TS,αα , relative spatial non-uniformity of 

responsivities TS,ββ , and dark (offset) cur-

rents MS0MT0T0S0 ,,, IIII ′′′′  of the standard, test, 
and monitor detectors, all of which are inde-
pendent of wavelength (or their changes are 
very small between neighbouring wave-
lengths where the measurement transfer is 
made).  

The ratios ( ) ( )λλ ST ,RR ′′  are formed from 
output signals ( ) ( )λλ ST , II  with simultane-
ously measured monitor output signals 

( ) ( )λλ MSMT , II  using the correlation between 
the related photocurrents to eliminate noise 
from possible fluctuations of the source. 
Usually this is totally independent of wave-
length. 

Typically, the contributions for the determi-
nation of any single responsivity value and 
the associated uncertainty, are uncorrelated 
(at the given wavelength where the meas-
urement transfer is made). These significant 
independent uncertainty components are 
added in quadrature. In case of independent 
variables, their covariances are zero. The 
quadrature sum can be applied to all ran-
dom components at a given wavelength.  

One component that may correlate the test 
and standard measurements is that of wave-
length uncertainty. Random wavelength set-
ting errors are correlated between test and 
standard measurements if the wavelength is 
set and the test and standard detectors 

measured; they are not correlated if the 
spectral range is swept independently for 
the test detector and standard detectors.  

4. SPECTRALLY INTEGRATED 
RESPONSIVITY  

The values representing the responsivity 
function ( )λSs ′  listed in a calibration certifi-
cate may be calculated from realizations 
totally independent for the different wave-
lengths. In this case, the uncertainty compo-
nents may not be correlated. However in 
practice, the responsivity function of the ref-
erence detector – usually a trap detector 
calibrated with a laser beam at a limited 
number of wavelengths - is interpolated 
based on the physical knowledge (quantum 
efficiency) or mathematical smoothness and 
results in correlations. Similarly, the respon-
sivity functions of detectors, calibrated with a 
trap detector, are corrected by mathematical 
procedures for wavelength setting, for errors 
due to output slit function or to smooth the 
values from wavelength to wavelength. All 
these procedures produce function values 
with uncertainties that are correlated. The 
correlations do not affect the individual val-
ues but become important if spectrally inte-
grated quantities are calculated. Calibration 
transfer from the primary standard radiome-
ter can also introduce correlated uncertain-
ties to a working reference standard, due to 
systematic offsets or scaling factors com-
mon to all measurement wavelengths. Cali-
bration certificates usually state the total 
uncertainty at a given wavelength and rarely 
distinguish between effects that are random 
and systematic (correlated) between wave-
lengths. 

At the highest level (primary or secondary 
calibration laboratory) measurements, when 
combining spectral values over different 
wavelengths, it is usually the systematic  
components that determine the measure-
ment uncertainty. For example. in a photodi-
ode radiant power responsivity calibration, 
such systematic components (at all wave-
lengths) are the absolute responsivity of the 
reference detector, repeatability with beam 
position, and photodiode amplifier gain.  

The integrated responsivity of a detector 
when it measures a broad-band light-source 
can be written as 



 n n
n

R s= P∑  (19) 

where Pn is the spectral power distribution of 
the light-source and sn is the measured 
spectral power responsivity of the detector 
all at the nth (equally-spaced) wavelength. 
The detector is usually optically filtered to 
obtain a known spectral power responsivity 
function in a well defined wavelength inter-
val. 

The relative uncertainty of R has to be cal-
culated. Uncertainties in sn are independent 
of those in Pn and hence 

(2 2 2 2 2( ) ( ) ( )n n n n
n

u R s u P P u s= +∑ )  (20) 

Often the spectral distribution of the source 
is a defined quantity (e.g. CIE Standard Il-
luminant A) and its values carry no uncer-
tainty. In the following discussion we as-
sume that source uncertainty is negligible; if 
required, the principles used to propagate 
uncertainties from the spectral responsivity 
values to that of the integrated response are 
identical for those of the source uncertain-
ties. 

As seen in Eqs. (3) and (4), determination of 
spectral responsivity is a transfer from a ref-
erence standard to the device under test, 

 , ,T n S n ns s t=  (21) 

where n denotes wavelength and t is the 
transfer ratio at the nth wavelength. Uncer-
tainties in spectral responsivity of the test 
detector arise from those of the standard 
and from the transfer process; these are 
treated independently and then added in 
quadrature. 

4.1 Uncertainties of the standard detector 

From Eq. (21), 

 ,
, ,

,

( ) ( ) (T n
T n n S n S n

S n

s
u s t u s u s

s
= = , )  (22) 

where the uncertainties in spectral respon-
sivity of the reference detector are obtained 
from the calibration certificate. These may 
be complex, depending on the method of 
generating the primary standard. In such 

cases, a full propagation using covariances 
between the reference values is required 
[1,2] – these must be sought from the sup-
plier of the reference standard.  

Some certificates provide total random com-
ponent uncertainties and total correlated 
uncertainties at each wavelength. Where the 
ratio (systematic component : total uncer-
tainty) of these components is approximately 
constant through the spectral range of inter-
est, the correlation coefficient r is also ap-
proximately constant and given by the 
square of the ratio and effective uncertain-
ties that are random and fully-correlated be-
tween wavelengths are readily determined. 
The effective uncertainty in spectral respon-
sivity that is random between wavelengths is 
then given by  

 ( ) 1 ( )R n nu s r u s= −  (23) 

and the total contribution of random effects 
to the uncertainty in the integrated spectral 
quantity is given by 

 ( )2 2( ) 1 ( )R nu R r P u s= − 2
n∑  (24) 

The effective uncertainty in spectral respon-
sivity that is fully correlated between wave-
lengths is given by  

 ( ) ( )S n nu s r u s=  (25) 

The total contribution of the systematic ef-
fects is given by the linear sum: 

 ( ) ( )S nu R r P u s= n∑  (26) 

Alternatively, where the systematic and ran-
dom components are given at each wave-
length, or their wavelength dependence is 
given as a scaling of some parameter, each 
systematic component may be propagated 
separately as a linear sum, and the total 
random components propagated in quadra-
ture. 

The total uncertainty contribution of the ref-
erence standard is the quadrature sum of 
the systematic and random components.  

A further complication is that spectral re-
sponsivity values for the reference standard 
may require interpolation to the wavelength 
values of the measurement. Interpolation 

 



introduces correlations and these must be 
taken into account when propagating the 
uncertainties of the standard detector. A 
simple process that avoids these complica-
tions is to interpolate the transfer ratio to the 
wavelengths at which the reference stan-
dard is calibrated and propagate uncertain-
ties in the integral sum (including the change 
in wavelength spacing) using only those val-
ues [3]. 

4.2 Uncertainties of transfer process 

Each effect contributing to uncertainty in the 
transfer can be classified as independent 
and either random between wavelengths or 
fully-correlated between wavelengths. These 
effects can also be separately determined 
for the numerator or denominator of the 
transfer ratio, as shown in Eqs. (3) and (4), 
and combined either linearly or in quadra-
ture depending on whether the effects are 
correlated or random between test and ref-
erence signals at the one wavelength. 

Once the uncertainty in the transfer ratio and 
hence its uncertainty in spectral responsivity 

 , ,( ) (e T n S n e nu s s u t )=  (27) 

is determined for each effect at each wave-
length, its contribution to the integral sum is 
calculated. For random components, 

 2 2 2( ) ( )e n eu R P u s= n∑  (28) 

For systematic components, uncertainties in 
the values of spectral responsivity at differ-
ent wavelengths are generally positively cor-
related, and the contribution to the integral 
sum is given by 

 ( ) ( )e n eu R P u s= n∑  (29) 

However some effects (e.g. wavelength off-
sets) can produce correlations that are posi-
tive or negative between wavelength pairs. 
These effects are properly handled by at-
taching a sign, that of the sensitivity coeffi-
cient for the effect, to the uncertainty in the 
transfer ratio. For example, consider the 
transfer ratio shown in Eq. (21). In the pres-
ence of a wavelength uncertainty fully corre-
lated between test and reference, the signed 
uncertainty in the transfer ratio test:standard 
signals at the nth wavelength is given by 

, , ,
, 2

, ,

1( ) ( )T n T n S n
e s n

S n S n

R R R
u t u

R R
λ

λ λ
⎛ ⎞∂ ∂

= −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
 (30) 

The signed uncertainty in spectral respon-
sivity for this effect at the nth wavelength is 
then given by combining Eqs. (27) and (30): 

, , ,
, ,
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( ) (R n T n S n
e s T n n

S n

s R R
u s t u

R
)λ

λ λ
∂ ∂⎛ ⎞

= −⎜ ⎟∂ ∂⎝ ⎠
 (31) 

This expression can be positive or negative 
depending on the slopes of the test and ref-
erence signals with respect to wavelength. 
The propagated uncertainty for a wave-
length offset applicable at all wavelengths, 
including these mixed correlations, is found 
by the linear sum 

, ,( ) ( )e n e su R P u s= T n∑  (32) 

Detailed discussions and examples for un-
certainty contributions of different correlated 
combinations can be found in [2].  

5. CONCLUSION 

When reporting spectral responsivity meas-
urement uncertainties, the total uncertainty 
contribution of effects systematic over wave-
lengths should be given at each wavelength, 
instead of the total uncertainty as is the 
usual practice. 
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